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Abstract. The majority of graph visualization algorithms emphasize
improving the readability of graphs by focusing on various vertex and
edge rendering techniques. However, revealing the global connectivity
structure of a graph by identifying significant vertices is an important
and useful part of any graph analytics system. Centrality measures re-
veal the “most important” vertices of a graph, commonly referred to as
central or influential vertices. Hence, a centrality-oriented visualization
may highlight these important vertices and give deep insights into graph
data. This paper proposes a mathematical optimization-based clustered
graph layout called Near-Optimal Concentric Circles (NOCC) layout to
visualize medium to large scale-free graphs. We cluster the vertices by
their betweenness values and optimally place them on concentric circles
to reveal the extensive connectivity structure of the graph while achiev-
ing aesthetically pleasing layouts. Besides, we incorporate different edge
rendering techniques to improve graph readability and interaction.

Keywords: Graph Visualization · Connectivity · Layout Algorithm ·
Scale-free Networks.

1 Introduction

Recent advancements in data collection have been producing big complex
data modeled as graphs (entities (vertices/nodes) and their relationships (edges/links)).
Effective analysis of medium-to-large graphs is gaining popularity in many ap-
plication domains, including social sciences, engineering, and natural sciences.
Human ability to identify and comprehend visual patterns makes visualization a
critical tool to understand graphs, and many studies used it as an effective tool
to improve perception in graph exploration [26, 14, 15, 19]. A reasonably well-
drawn graph visualization will help users to quickly get deeper insights into the
data by highlighting existing patterns and revealing hidden patterns.

Many visualization algorithms such as force-based for large-scale graphs re-
sult in space-filling, cluttered visualization like a hairball [11]. This visual clutter,
due to overlapping vertices and a large number of edge-crossings, makes visual-
izations hard to read and interpret. Rendering a large number of vertices in a
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small space increases vertex overlaps and aggravates the visual clutter.A variety
of methods have been proposed to address this problem and the most promising
solution is attribute-based clustering of the vertices for visualization [18]. Vertex
clustering creates simpler visualizations by grouping vertices with similar at-
tributes to organize the graph in a presentable way. The majority of the vertex-
cluster based graph layout algorithms focus on graph readability by reducing
vertex overlaps, increasing intra-cluster edges, reducing inter-cluster edges, and
rendering only a portion of the edges [18, 25]. They do not attempt to highlight
the intrinsic structures of graphs - which is the main focus of our work.

Another solution for clutter reduction is to consider the layout generation as a
mathematical optimization problem [30]. An objective function with constraints
is defined on the vertex positions based on certain graph drawing aesthetics such
as constant edge length. Layout generation algorithms consider these constraints
and try to minimize a cost function to produce the final layout. Finding an opti-
mal solution for this minimization cost function is NP-hard in most of the cases.
Therefore, heuristics are employed to attain a “near-optimal” or an approximate
solution for the immediate goal of clutter reduction in graph drawings.

In this paper, we present a novel scale-free graph visualization technique that
features centrality-based clustering of the vertices, called Near-Optimal Concen-
tric Circles (NOCC) layout. Large, scale-free graphs appear in many real-world
systems including social, computer and biological networks [8, 28, 12, 34, 20, 32].
These graphs exhibit a power-law vertex degree distribution P (k) ∼ k−γ where
P (k) is the probability that a vertex has k links, and γ is the degree exponent
which is typically in the range (2,3) [24]. This indicates that a small portion
of the vertices in these graphs have very high degrees while many vertices have
low degrees. Centrality measures contextually identify influential vertices, and
highlighting these vertices is useful in analyzing the topological structures of
graphs. There are many centrality measures defined on graphs. Choosing the
appropriate one depends on the problem at hand. In our approach, we choose
the betweenness centrality to generate the vertex clusters as betweenness reveals
the critical vertices that effectively connect other pairs of vertices in a graph.

After clustering the vertices based on their betweenness values, we present a
concentric circle layout generation algorithm using mathematical optimization
that places the vertices on circles representing the clusters. Finally, we combine
graph coloring and partial edges to show that our algorithm generates aestheti-
cally pleasing layouts.

Our main contribution in this study is a novel betweenness-based central-
vertex graph layout algorithm for scale-free graphs using mathematical opti-
mization that naturally shows the intrinsic connectivity structure by highlighting
influential vertices. We use polar coordinates to enforce the constraints strictly
rather than in a lazy manner [6].
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2 Related Work

The history of graph visualization can be traced back over centuries. One of
the earliest and the most fundamental visualizations of graphs is a node-link
diagram, where vertices are represented as dots and relations between vertices
as lines. Knuth’s flowchart drawing paper [23] is considered one of the seminal
works on graph visualization algorithms.

Ahmed et al. [1] present a variation of a fast-force-directed layout to visualize
scale-free graphs in three dimensions. Vertices are constrained to parallel planes
or on the surface of a sphere to minimize occlusion. Jia et al. [21] present a better
interactive layout for large scale-free graphs that filters a large portion of less
important edges while preserving other important features of the graph. Ander-
sen et al. [2] present an algorithm that focuses on partitioning edges into local
and global sets. Local or global edges are defined by the size of the maximum
short flow between the edges’ endpoints. These sets are visualized using a force-
directed method emphasizing local edges. Baur et al. [3] describe a 2.5D method
where the core hierarchy is partitioned into k-cores and these cores are used to
visualize the graph structure. Cores are represented by 2D layouts. The inter-
dependence for increasing k value is the third dimension, drawn using spectral
layout starting with cores with the maximum value. Chan et al. [7] present Out-
Degree Layout (ODL) by separating the vertices into multiple hierarchical layers
based on the outdegree of each vertex. They demonstrate that their algorithm
can produce aesthetically pleasing layouts by naturally drawing related vertices
closer to each other. Giot et al. [16] present a layout algorithm that emphasizes
cores of very large graphs. They use a combination of the hierarchical coreness
decomposition with existing layout algorithms according to cluster topologies to
produce vertex-overlap-free drawings. Takac et al. [27] propose a scalable, fast,
and easy graph visualization layout called radius degree layout (RDL). Vertices
are randomly placed on the circle arc and the distance from the center of the
visualization to the vertex is inversely proportional to its degree.

Concentric circle-based visualization is a popular layout in visualizing rooted
trees [13]. The root vertex of the tree is at the center and the descendant vertices
are placed on subsequent rings (circles), similar to a concentric circle layout. It
is used in other layouts like [9] and [6] to reflect the distance between entities
of a graph. Chou et al. [9] visualizes the closest neighbors of a selected paper
(vertex). The selected vertex is shown at the center and vertices (papers) related
to the selected one are shown on a number of concentric discs according to their
distance. Vertices are binned into categories, and each ring (circle) represents
a bin. Castermans et al. also present a concentric circle based visualization of
the closest neighbors of a selected entity [6]. The distances represent the “near-
exact” distances between the neighbors and the selected vertex. Although [9]
and [6] are concentric circle-based layouts, they focus on showing only a small
portion of a graph: the vertex of interest and its neighborhood. This is different
from our work, where we focus on revealing the extensive connectivity structure
of a scale-free graph by identifying the important vertices based on betweenness.
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Most of the discussed related work presents layout techniques to improve
the readability of scale-free graphs via an existing layout algorithm or showing
only a small portion of the graph. In [1, 17, 2] the authors present the results
on small to medium-size graphs and the scalabilities of these algorithms are
not discussed. In [21], the authors present vertex filtering to avoid rendering all
vertices. Interested readers can find more related works in [4] and [10].

In this work, we present a novel concentric circle based graph layout algo-
rithm that emphasizes relatively important vertices based on the betweenness
centrality. In this process, we use the benefit of global optimization - not depen-
dent on initial positions or points.

3 Near-Optimal Concentric Circles Layout

NOCC places vertices in a 2-dimensional space, with position depending on
betweenness. NOCC uses the betweenness centrality - an indicator to iden-
tify relatively important vertices emphasizing extensive connectivity structure
of scale-free graphs. Removal of a vertex with high betweenness can potentially
disconnect a graph. For example, in router-level Internet topology graphs, fail-
ure of a router with high betweenness centrality will cause significant service
disruptions until recovery processes occur.

Vertex betweenness gives the scale to which a vertex is present on the shortest
paths between pairs of other vertices using the following formula:

Cb(v) =
∑

s̸=v ̸=t
s,v,t∈V

σst(v)

σst
(1)

where σst is the total number of shortest paths from vertex s to t and σst(v) is
the total number of these paths through v.

We used the ck-means algorithm [29] to cluster the vertices using different
centralities - degree, stress, betweenness, closeness, and variations of eigencen-
trality, to study the inter-cluster relations. We define Edgehop as the difference
in the cluster number of the two endpoints of an edge. For example, an edge from
a vertex in cluster 2 to a vertex in cluster 4 has edgehop of 4− 2 = 2. Edgehop
is used to identify patterns in inter-cluster and intra-cluster edges. We used the
ck-means algorithm [29] to cluster the vertices using betweenness centrality to
study the Edgehop relations and found a pattern as shown in Fig. 1 to visualize
graphs in small display areas. These figures indicate that:

(i) Most of the edges are between the vertices in the outermost cluster that is
congruent with the number of vertices at the edge of the scale-free graphs.

(ii) Very few edges span from the outermost toward the innermost clusters.

(iii) Significant number of edges are between the vertices in the same cluster
(edgehop = 0) or in the immediately neighboring cluster (edgehop = 1), or
in the clusters that are close to each other (edgehop = 2 or 3).
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Fig. 1: Charts showing the edgehop histograms. Edgehop histogram for graphs
with (a) |V | = 1000, (b) |V | = 5000 (c) |V | = 10000.

To visualize the clusters in the final layout, we use a concentric circles layout,
as it naturally highlights the important vertices relevant to the connectivity
structure of a graph while conveying the hierarchy of importance. Vertices with
high betweenness values are drawn on circles closer to the common center and
vice-versa. Vertices having similar importance are visualized on the same circle.
The main idea in generating the NOCC layout are:

(i) For each cluster, generate random vertex positions.

(ii) Generate final vertex positions by minimizing the total edge length.

(iii) Render the final layout to place the vertices in an optimal way.

Therefore, cluster 1 has the vertices with the highest betweenness.

3.1 Global Optimization Function

The next challenge is to place vertices on their respective circles to achieve an
aesthetically pleasing visualization to convey the connectivity information. Note
that a particular placement of vertices on their circles affects the placement of
their neighboring vertices cascadingly. We modeled the layout calculation step as
a global minimization (optimization) problem with constraints to produce easily
readable layouts.

After generating vertex clusters, {c1, c2, c3, . . . , cm}, the vertices are placed
on concentric circles according to the clusters that they belong to. We aim for
a near-optimal placement of the vertices of a graph G(V,E) on these circles.
We calculate the length of each edge and minimize the total edge length of the
graph. This will also reduce a considerable amount of long edges, which will, in
turn, reduce edge-crossings.

The coordinates of a vertex vi ∈ V , denoted by denoted by (xi, yi) ∈ R2, are
represented using the Polar coordinates, (r, θ). Vertices are placed on concentric
circles/rings, {c1, c2, c3, . . . , cm}, centered at the origin. As all the circles in the
visualization are origin-centered, the coordinates of a vertex vi on a circle of
radius ri at an angle θi are given by:
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xi = ri cos(θi)

yi = ri sin(θi)
(2)

The distance between two points i, j at equal distance from the center, r is
given by:

d = 2r sin(
θj − θi

2
) (3)

The following optimization will meet the rationale of placing the neighboring
vertices closer to each other by minimizing the total edge length:

minimize
∑

(vi,vj)∈E

r2i + r2j − 2rirjcos(θj − θi)

subject to

2πrk
θk′ − θk

2π
≥ 2a, ∀vk, vk′ ∈ ck

(4)

where rk is the radius of the circle for cluster ck and a is the radius of the filled
circles representing the vertices. The constraint ensures that the vertices on the
same cluster circle do not overlap. Specifically, the distance between any two
vertices of a cluster is at least two times the radius of a vertex.

For each edge, the endpoint vertices are constant throughout the optimization
process and thus the radii are constant. The optimization problem is a non-linear
optimization problem with a linear inequality constraint as presented in 4.

3.2 Generating Vertex Positions

We use the NLOPT1 library, and specifically its Improved Stochastic Ranking
Evolution Strategy (ISRES). The original algorithm can be found here2.

The layout generation is a two-step process shown in Algorithm 1. The first
step generates the layout for the vertices in the innermost cluster. The second
step generates the layout for the vertices in the remaining clusters.

Graph vertex clusters and the concentric circle radii are inputs to Algorithm 1
and graph layout is the output. Line 1 places the vertices of the innermost clus-
ter equi-angularly, which are fixed throughout the next steps. The vertices in
the innermost cluster are placed at equal arc distances as they are the most im-
portant vertices in terms of connectivity and we want to highlight them for easy
viewing and interactions using a mouse. Moreover, they serve as the invariants
between multiple runs of the optimization algorithm. Line 2 will set the opti-
mization algorithm to ISRES. Line 3 sets the objective function along with its
constraints. Line 4 will set the termination threshold which is 0.001 in our ex-
periments. Lines 6 to 15 define the second step in the process that will generate

1 http://ab-initio.mit.edu/wiki/index.php/NLopt
2 http://www3.hi.is/ tpr/papers/RuYa05.pdf
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Algorithm 1 Layout Generation Algorithm

Require: Graph Vertex Clusters
Require: Radii of the concentric circles (rings)
Ensure: Graph layout Set the positions of the vertices in cluster 1
1: Place cluster 1 vertices at equal angles on ring 1 Run the optimization for the

vertices on ring 1
2: Optimization Algorithm: ISRES
3: Set the objective function and inequality constraints
4: Set the termination condition
5: Place the vertices in each cluster
6: for each cluster from 2 to m do
7: Place the vertices at equal angles on their rings
8: for each vertex(v) belongsto i do
9: Set position bounds to [0,2π]
10: end for
11: end for
12:

Run the optimization for all vertices on rings 2 to m
13: Set the objective function and inequality constraints
14: Set the termination condition
15: Run the algorithm to produce the final layout

the final layout. Line 6 to 11 place the vertices of rings 2 to m equi-angularly on
the rings and set the bounds for the position of each vertex. The optimization
procedure described at lines 13 to 15 is similar to the procedure described at
lines 2 to 4. Finally, line 15 runs the optimization function with all the above
parameters to produce the final layout.

Since the algorithm runs for a limited number of iterations to reach the
termination threshold, the output of the vertex placement is not necessarily
optimal, so we call it ”near-optimal”.

3.3 Graph Rendering

Size and Colors of Vertices Vertex colors are assigned according to their
corresponding clusters. Colors are chosen in-order from a list to distinguish the
vertices of a cluster from its two immediate neighboring clusters to improve the
visual clarity. The cluster ring has the same color as its vertices.
Cluster Radius For the radius of each cluster, we tested various radii options
and concluded that the visualization is aesthetically pleasing with a constant
increment of the cluster radii. If the radius of a ring is too large to fit the display
screen, we can re-space rings, re-cluster the vertices on a ring, or allow vertex
overlapping.
Edge Rendering We render two edge styles. The first is a line segment between
two vertices drawn in grey color. Figure 2a shows a synthetic graph with all the
vertices and complete edges rendered. The second edge style is partial edge
rendering (PED), similar to [25] and [5], drawn to improve the readibility of the
NOCC layout visualizations. A partial edge is an edge that is drawn only around
its incident vertices. It has become a popular style to curtail edge-crossings
for clutter reduction [5]. The default partial edge length is 10% of the actual
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(a) (b) (c)

Fig. 2: NOCC Layout for a computer-generated graph with 200 vertices and 597
edges (a) Complete edges, (b) Partial Edges, (c) Just the vertices without edges.

edge length. At each vertex, a partial edge is drawn with the same color of
the vertex it is connected to and the direction pointing towards the connected
vertex. Figure 2b shows the same layout from Figure 2a with partial edges as
described. This rendering will give the user an idea of the degree of each vertex
and the clusters of its neighbors through the partial edge colors. Lastly, figure 2c
shows only the vertex positions generated by NOCC without any edges. Users
can interactively switch between the three types of visualizations.
The main features of the layout are:

(i) A concentric circle-based 2D layout where each circle represents a cluster.
(ii) Clusters are based on the betweenness values of vertices. The cluster with

the smallest radius has the vertices with the highest betweenness. As we
move away from the center, the betweenness’ of vertices decreases.

(iii) All edges are rendered and PED of each vertex show the directions to the
connected vertices. Lengths of partial edges can be tuned.

(iv) All vertices are the same size, and vertices of a cluster have the same color.

4 Case Study - Human Protein-Protein Interactions

We present the visualization of a real-world graph: the Human Binary Protein-
Protein Interactions (PPI) dataset, freely available from Koblenz Network Col-
lection3. Proteins rarely function in isolation and their interactions are of great
interest to the biological research community. Protein-Protein Interactions (PPI)
are crucial for understanding protein functions, analyzing biological processes,
and examining diseases. PPI networks enable study of the characteristics of
proteins and their interactions by representing proteins as nodes and their in-
teractions as edges.

In [33] the authors identify bottleneck proteins, which have high betweenness
and low degree centralities in PPI networks. These proteins are more likely to be

3 http://konect.uni-koblenz.de/networks/maayan-figeys
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(a) (b) (c)

Fig. 3: NOCC Layout of Human Binary Protein-Protein Interactions graph con-
sisting of 2217 vertices and 6418 edges (a) Complete graph without the edges
(b) Complete graph with edges (c) Complete graph with partial edges.

essential for crucial functional and dynamic properties [22], [33]. It is reported
that drug-target proteins have high degree and/or betweenness [31]. Therefore,
identifying and visualizing the bottleneck proteins will help biologists to examine
(i) if these proteins are the targets of various pathogens and (ii) if they can target
these proteins to treat certain diseases.

Figure 3c presents the Human Binary Protein-Protein Interactions graph
consisting of 2217 vertices and 6418 edges drawn using the NOCC layout with
partial edges as a case study. The vertices (proteins) on the center rings (clusters)
are the vertices with higher betweenness values. These are the major influential
proteins such as IKBKE, MYC and ASCC3L1 through which a lot of communica-
tion takes place. In Figure 3, the contextual importance of the vertices decreases
as we move away from the center toward the outer circles. Yu et al. divide pro-
teins into four categories based on their degree and betweenness centralities [33]:
(i) nonhub-nonbottlenecks, (ii) hub-nonbottlenecks, (iii) nonhub-bottlenecks and
(iv) hub-bottlenecks. The NOCC layout naturally demonstrates those important
bottleneck proteins that need to be studied further by domain experts. IKBKE in
Figure 3c is one of the very important proteins in treating cancer and inflamma-
tory diseases. This is a hub-bottleneck protein with degree 314 and betweenness
295061. Another significant protein naturally revealed in Figure 3c is MYC and
it is a nonhub-bottleneck protein. MYC has a relatively low degree of 115 with
a high betweenness value of 122303. Similarly, ASCC3L1 in Figure 3c plays an
essential role in pre-mRNA splicing. It has a very low degree of 14 with a high
betweenness value of 34333.2.

5 Conclusions And Future Work

We summarized a visualization model that generates a central-vertex based lay-
out while reducing the visual clutter and improving the visual information. We
described a graph layout algorithm that reveals the extensive connectivity struc-
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tures of scale-free graphs by naturally highlighting relatively important vertices
with a tightly connected core vertex group. The NOCC layout can also be used
in graph resilience analysis under targeted vertex failures. It naturally highlights
the vertices that play the key role in graph connectivity. Although previous works
attempted to generate better layouts to reduce the visual clutter, they weren’t
successful in highlighting the intrinsic connectivity structures of graphs.

Future work include formal comparison of NOCC with similar concentric
circle and large graph visualization layouts to study its usefulness in terms of
visual quality, layout generation speed and interactivity.
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